Non-Hilbertian tangents to Hilbertian spaces

نویسندگان

چکیده

We provide examples of infinitesimally Hilbertian, rectifiable, Ahlfors regular metric measure spaces having pmGH-tangents that are not Hilbertian.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Euclidean spaces as weak tangents of infinitesimally Hilbertian metric spaces with Ricci curvature bounded below

We show that in any infinitesimally Hilbertian CD∗(K,N)-space at almost every point there exists a Euclidean weak tangent, i.e. there exists a sequence of dilations of the space that converges to a Euclidean space in the pointed measured Gromov-Hausdorff topology. The proof follows by considering iterated tangents and the splitting theorem for infinitesimally Hilbertian CD∗(0, N)-spaces.

متن کامل

HOMOGENEOUS HILBERTIAN SUBSPACES OF NON-COMMUTATIVE Lp SPACES

December 22, 1999 Abstract. Suppose A is a hyperfinite von Neumann algebra with a normal faithful normalized trace τ . We prove that if E is a homogeneous Hilbertian subspace of Lp(τ) (1 ≤ p < ∞) such that the norms induced on E by Lp(τ) and L2(τ) are equivalent, then E is completely isomorphic to the subspace of Lp([0, 1]) spanned by Rademacher functions. Consequently, any homogeneous Hilberti...

متن کامل

Classification of Contractively Complemented Hilbertian Operator Spaces

We construct some separable infinite dimensional homogeneous Hilbertian operator spaces H ∞ and H m,L ∞ , which generalize the row and column spaces R and C (the case m = 0). We show that separable infinitedimensional Hilbertian JC∗-triples are completely isometric to an element of the set of (infinite) intersections of these spaces . This set includes the operator spaces R, C, R ∩ C, and the s...

متن کامل

Abundance of Hilbertian Domains

We construct an abundance of Hilbertian domains: Let O be a countable separably Hilbertian domain with a qoutient eld K and let e 2 be an integer. Let L be an abelian extension of K such that ford(a) j a 2 G(L=K)g is unbounded, and let O L be the integral closure of O in L. Then, for almost all 2 G(K) e , each ring between O L and L K s () is separably Hilbertian.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings

سال: 2022

ISSN: ['0890-1740']

DOI: https://doi.org/10.1017/prm.2022.18